

28th Annual Meeting of the American Society for Gravitational and Space Research

Twenty Years of Acceleration Measurements in Low-G Environments

Over a Decade of Support for the International Space Station

Kevin McPherson
Jennifer Keller
Eric Kelly
Ken Hrovat

ACRONYM	Definition		
ARED	Advanced Resistive Exercise Device		
ATV	Automated Transfer Vehicle		
BASS	Burning And Suppression of Solids		
CASIS	Center for the Advancement of Science in Space		
CEVIS	Cycle Ergometer with Vibration Isolation System		
CIR	Combustion Integrated Rack		
FIR	Fluids Integrated Rack		
GRC	Glenn Research Center		
HiRAP	High Resolution Accelerometer Package		
ISS	International Space Station		
JAXA	Japan Aerospace Exploration Agency		
MAMS	Microgravity Acceleration Measurement System		
MSG	Microgravity Science Glovebox		
NASA	National Aeronautics and Space Administration		
OARE	Orbital Acceleration Research Experiment		
oss	OARE Sensor Subsystem		
PCSA	Principal Component Spectral Analysis		
PIMS	Principal Investigator Microgravity Services		
PSD	Power Spectral Density		
RMS	Root Mean Square		
RTS	Remote Triaxial Sensor		
SAMS	Space Acceleration Measurement System		
SE	Sensor Enclosure		
T2	Treadmill 2		
ТВ	Terabytes		
TSH-ES	Triaxial Sensor Head Ethernet Standalone		

- 1. Capabilities and Services
- 2. Science Support and Customers

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts

if time allows, then some detail slides

- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

• **NASA GRC** - continued goal of providing timely and readily accessible acceleration data, along with archival and analysis services for scientific payloads, structural dynamics monitoring, and technology developers.

- <u>NASA GRC</u> continued goal of providing timely and readily accessible acceleration data, along with archival and analysis services for scientific payloads, structural dynamics monitoring, and technology developers.
- SAMS the Space Acceleration Measurement System:
 - has ability to instrument and measure local vibratory regime in all 3 of the ISS labs, including throughout the USL ($0.01 \le f \le 300 \text{ Hz}$).
 - > given approval for upgrading the control unit, which provides a more robust, long-term solution for continued life-cycle support of the ISS.

- <u>NASA GRC</u> continued goal of providing timely and readily accessible acceleration data, along with archival and analysis services for scientific payloads, structural dynamics monitoring, and technology developers.
- SAMS the Space Acceleration Measurement System:
 - \succ has ability to instrument and measure local vibratory regime in all 3 of the ISS labs, including throughout the USL ($0.01 \le f \le 300 \text{ Hz}$).
 - > given approval for upgrading the control unit, which provides a more robust, long-term solution for continued life-cycle support of the ISS.
- MAMS the Microgravity Acceleration Measurement System:
 - measures the quasi-steady acceleration regime (f < 0.01 Hz).</p>
 - data can be mapped to any location (rigid-body assumed).

- <u>NASA GRC</u> continued goal of providing timely and readily accessible acceleration data, along with archival and analysis services for scientific payloads, structural dynamics monitoring, and technology developers.
- SAMS the Space Acceleration Measurement System:
 - has ability to instrument and measure local vibratory regime in all 3 of the ISS labs, including throughout the USL ($0.01 \le f \le 300 \text{ Hz}$).
 - ➢ given approval for upgrading the control unit, which provides a more robust, long-term solution for continued life-cycle support of the ISS.
- MAMS the Microgravity Acceleration Measurement System:
 - > measures the quasi-steady acceleration regime (f < 0.01 Hz).
 - data can be mapped to any location (rigid-body assumed).
- <u>PIMS</u> the Principal Investigator Microgravity Services team maintains the acceleration data from the ISS and provides analysis and related services for investigators, sustaining engineering, and the microgravity community at-large.

Web access to: near real-time displays, acceleration archives, and tailored off-line requests

http://pims.grc.nasa.gov

pimsops@grc.nasa.gov

24x7

SAMS & MAMS

stream acceleration

data from the ISS

Start Date = 5/3/2001

Stop Date = 11/23/2012

Hours ~ 101,328

NASA GRC Sensor Hours > 354,451

SAMS Sensor Hours > 214,911

MAMS Sensor Hours > 139,540

Web access to: near real-time displays, acceleration archives, and tailored off-line requests

http://pims.grc.nasa.gov

pimsops@grc.nasa.gov

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts
- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

Science Support and Customers

NASA's Physical Sciences Research Program conducts fundamental & applied research with experiments in:

Fluid Physics
Combustion Science
Materials Science
Fundamental Physics
Complex Fluids

Science Support and Customers

NASA's Physical Sciences Research Program conducts fundamental & applied research with experiments in:

Fluid Physics
Combustion Science
Materials Science
Fundamental Physics
Complex Fluids

SAMS/MAMS were designed to support these disciplines, and along with **PIMS** for analysis, these **NASA GRC** projects also serve a role in ongoing support of:

Vehicle Loads and Dynamics Monitoring Technology Developers

- 1. Capabilities and Services
- 2. Science Support and Customers

3. Timeline of Acceleration System Deployment

- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts
- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

Timeline of Acceleration System Deployment

Timeline of Acceleration System Deployment

Shuttle Missions with SAMS

in 2003

STS-40 in 1991

SORTED BY CARRIER				
CARI	ACRONYM			
Spacelab	Module	SLS-1		
		IML-1		
		USML-1		
		SL-J		
		IML-2		
		USML-2		
		LMS		
		MSL-1		
	MPESS	USMP-1		
		USMP-2		
		USMP-3		
		USMP-4		
	SH-1			
	SH-2			
SPACE	SH-3			
	SH-5			
	SH-10			
Mida	STS-43			
Iviide	ATLAS-3			

SORTED BY DATE						
DATE	FLIGHT	ACRONYM	PAYLOAD			
June 5-14, 1991	STS-40	SLS-1	1st Spacelab for Life Sciences			
August 2-11, 1991	STS-43		TDRS deployment			
January 22-30, 1992	STS-42	IML-1	1st International Microgravity Laboratory			
June 25 - July 9, 1992	STS-50	USML-1	1st US Microgravity Laboratory			
September 12-20, 1992	STS-47	SL-J	Japanese Spacelab			
October 22 - November 1, 1992	STS-52	USMP-1	1st US Microgravity Payload			
June 21 - July 1, 1993	STS-57	SH-1	1st SPACEHAB			
February 3-11, 1994	STS-60	SH-2	2nd SPACEHAB			
March 4-18, 1994	STS-62	USMP-2	2nd US Microgravity Payload			
July 8-23, 1994	STS-65	IML-2	2nd International Microgravity Laboratory			
November 3-14, 1994	STS-66	ATLAS-3	3rd Atmospheric Laboratory for Applications and Sciences			
February 3-11, 1995	STS-63	SH-3	3rd SPACEHAB			
October 20 - November 5, 1995	STS-73	USML-2	2nd US Microgravity Laboratory			
February 22 - March 9, 1996	STS-75	USMP-3	3rd US Microgravity Payload			
June 20 - July 7, 1996	STS-78	LMS	Life and Microgravity Spacelab			
September 16-26, 1996	STS-79	SH-5	5th SPACEHAB, 4th Mir docking			
April 4-8, 1997	STS-83	MSL-1	Microgravity Sciences Laboratory			
July 1-17, 1997	STS-94	MSL-1R	Microgravity Sciences Laboratory Reflight			
November 19 - December 5, 1997	STS-87	USMP-4	4th US Microgravity Payload			
January 22-31, 1998	STS-89	SH-10	10th SPACEHAB, 8th Mir docking			
January, 2003	STS-107		Multi-disciplinary Microgravity & Earth Science Research			

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment

4. Current Sensor Locations on the ISS

- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts
- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS

5. Basics of the Microgravity Environment

- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts
- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

Basics of the Microgravity Environment

a generic label, not intended to quantitatively characterize a platform

Microgravity Environment

Component

Frequency

Magnitude

 $0 \le f < 0.01 \text{ Hz}$

μg's (or less) peak

Quasi-Steady

Primary Sources gravity gradient & rotational effects: not at center of mass drag: function of altitude, attitude, day/night, etc. vehicle: venting water or air

 $0.01 \le f \le 300 \text{ Hz}$

Vibrator

tens to thousands µg_{RMS}

equipment: pumps, fans, centrifuges, compressors, etc. crew: ergometer or treadmill exercise

vehicle: structural modes

broadband

Transient

tens of mg's peak

vehicle: thrusters, dockings crew: pushoffs & landings, drawer/door closings, experiment setup

equipment: machinery startup

Basics of the Microgravity Environment

Basics of the Microgravity Environment

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment

6. Roadmaps for the Microgravity Environment

- 7. Brief Characterization of Some Disturbances
- 8. Reboosts
- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

spectrogram is a "roadmap" that shows boundaries and structure in time and frequency

- 1.Qualify
- 2.Quantify

Roadmap for Vibratory Regime sams2, 121f02 at LAB152, MSG, Upper Left Seat Track :[161.95 40.39 157.64]

Roadmap for Quasi-Steady Regime

time series with primary focus on mean value and low-frequency components

Roadmap for Quasi-Steady Regime

Outline

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment

- 8. Reboosts
- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

Source	Brief Characterization Notes	
Progress Reboost*	duration = 11.4 minutes, x-axis step = 0.4 mg * mean values based on 24 reboosts	
ATV3 Reboost	duration = 7.0 minutes, x-axis step = 0.3 mg	
Mode One	~0.1 Hz, fund. mode of main truss monitored daily by loads and dynamics team USL < 2 ugRMS, COL & JEM < 3 ugRMS (Sept. 2012)	
GLACIER Ops	two narrowband spectral peaks: (1) 162 ugRMS @ 60 Hz, (2) 112 ugRMS @ 120 Hz	
Ku-Band Antenna	na 5 to 17 Hz, nom. < 500 ugRMS with orbital period variations	
MSG Ops	broadband, step up 536 ugRMS for f < 200 Hz	
Robonaut Ops	narrowband peak: 50 ugRMS @ ~47 Hz	
ARIS Attenuation	0.01 to 20 Hz, step down from ~100 to ~10 ugRMS (FIR ops)	
CCAA	fan: ~57 Hz or ~95 Hz, ~510 ugRMS water separator: ~98 Hz, ~234 ugRMS	
Crew Sleep/Wake difference primarily below about 6 Hz: USL during sleep ~11.8 ugRMS, during wake ~23.9 JEM during sleep ~15.2 ugRMS, during wake ~34.6 COL during sleep ~17.3 ugRMS, during wake ~37.7		

Source	Brief Characterization Notes		
Progress Reboost*	duration = 11.4 minutes, x-axis step = 0.4 mg * mean values based on 24 reboosts		
ATV3 Reboost	duration = 7.0 minutes, x-axis step = 0.3 mg		
Mode One	~0.1 Hz, fund. mode of main truss monitored daily by loads and dynamics team USL < 2 ugRMS, COL & JEM < 3 ugRMS (Sept. 2012)		
GLACIER Ops	two narrowband spectral peaks: (1) 162 ugRMS @ 60 Hz, (2) 112 ugRMS @ 120 Hz		
Ku-Band Antenna	a 5 to 17 Hz, nom. < 500 ugRMS with orbital period variations		
MSG Ops	broadband, step up 536 ugRMS for f < 200 Hz		
Robonaut Ops	narrowband peak: 50 ugRMS @ ~47 Hz		
ARIS Attenuation	ARIS Attenuation 0.01 to 20 Hz, step down from ~100 to ~10 ugRMS (FIR ops) CCAA fan: ~57 Hz or ~95 Hz, ~510 ugRMS water separator: ~98 Hz, ~234 ugRMS		
CCAA			
Crew Sleep/Wake	difference primarily below about 6 Hz: USL during sleep ~11.8 ugRMS, during wake ~23.9 ugRMS JEM during sleep ~15.2 ugRMS, during wake ~34.6 ugRMS COL during sleep ~17.3 ugRMS, during wake ~37.7 ugRMS		

	Source	Brief Characterization Notes		
	Progress Reboost*	duration = 11.4 minutes, x-axis step = 0.4 mg * mean values based on 24 reboosts		
	ATV3 Reboost	duration = 7.0 minutes, x-axis step = 0.3 mg		
~0.1 Hz, fund. mode of main truss Mode One monitored daily by loads and dynamics team USL < 2 ugRMS, COL & JEM < 3 ugRMS (Sept. 2012)		monitored daily by loads and dynamics team		
	GLACIER Ops	two narrowband spectral peaks: (1) 162 ugRMS @ 60 Hz, (2) 112 ugRMS @ 120 Hz		
	➤ Ku-Band Antenna	nd Antenna 5 to 17 Hz, nom. < 500 ugRMS with orbital period variations		
	MSG Ops	broadband, step up 536 ugRMS for f < 200 Hz		
	Robonaut Ops	narrowband peak: 50 ugRMS @ ~47 Hz		
	ARIS Attenuation	0.01 to 20 Hz, step down from ~100 to ~10 ugRMS (FIR ops)		
	CCAA fan: ~57 Hz or ~95 Hz, ~510 ugRMS water separator: ~98 Hz, ~234 ugRMS			
JEM during sleep ~15.2 ugRMS, during wak		difference primarily below about 6 Hz: USL during sleep ~11.8 ugRMS, during wake ~23.9 ugRMS JEM during sleep ~15.2 ugRMS, during wake ~34.6 ugRMS COL during sleep ~17.3 ugRMS, during wake ~37.7 ugRMS		

Source	Brief Characterization Notes		
Progress Reboost*	duration = 11.4 minutes, x-axis step = 0.4 mg * mean values based on 24 reboosts		
ATV3 Reboost	duration = 7.0 minutes, x-axis step = 0.3 mg		
Mode One	~0.1 Hz, fund. mode of main truss monitored daily by loads and dynamics team USL < 2 ugRMS, COL & JEM < 3 ugRMS (Sept. 2012)		
GLACIER Ops	two narrowband spectral peaks: (1) 162 ugRMS @ 60 Hz, (2) 112 ugRMS @ 120 Hz		
Ku-Band Antenna	5 to 17 Hz, nom. < 500 ugRMS with orbital period variations		
MSG Ops	broadband, step up 536 ugRMS for f < 200 Hz		
Robonaut Ops	narrowband peak: 50 ugRMS @ ~47 Hz		
ARIS Attenuation	0.01 to 20 Hz, step down from ~100 to ~10 ugRMS (FIR ops)		
CCAA	fan: ~57 Hz or ~95 Hz, ~510 ugRMS water separator: ~98 Hz, ~234 ugRMS		
difference primarily below about 6 Hz: USL during sleep ~11.8 ugRMS, during wake ~23.9 ugRM JEM during sleep ~15.2 ugRMS, during wake ~34.6 ugRM COL during sleep ~17.3 ugRMS, during wake ~37.7 ugRM			

Outline

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances

8. Reboosts

- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

Progress Reboosts

BEFORE

DURING

BEFORE

0 < f < 200 Hz

DURING

BEFORE

0 < f < 200 Hz

DURING

before and after reboost look remarkably similar

BEFORE

0 < f < 6 Hz

DURING

BEFORE

0 < f < 6 Hz

DURING

Outline

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts

9. Ku-Band Antenna

- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

Ku-Band Antenna, Qualify sams2, 121f08030 at COL1A1, ER3, Seat Track near D1:[371.17 193.43 165.75]

Ku-Band Antenna, Qualify

Ku-Band Antenna, Qualify

Ku-Band Antenna, Quantify

Ku-Band Antenna, **Quantify** 10-Minute Interval RMS, 5 < f < 17 Hz

Ku-Band Antenna, Quantify 10-Minute Interval RMS, 5 < f < 17 Hz

NASA	

SAMS SENSOR	LOCATION	Median RMS (ug)	
121f03	USL, ER2	83	
121f05	JEM, ER4	105	
121f08	COL, ER3	235	

Outline

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts
- 9. Ku-Band Antenna

- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

Outline

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts
- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?

11. ARIS Attenuation During FIR Ops

12. Structural "Mode One"

ZIN Technologies

ARIS Attenuation During FIR Ops

ZIN Technologies

ARIS Attenuation During FIR Ops

Frequency		RMS	(ug)
Range		ARIS	ARIS
(Hz)	GMT	OFF	ON
[0.01-20)	02-Aug-2012	105	9
[0.01-20)	05-Aug-2012	96	12
[20-200)	02-Aug-2012	486	479
[20-200)	05-Aug-2012	480	469

ARIS Attenuation During FIR Ops

Frequency		RMS (ug)	
Range		ARIS	ARIS
(Hz)	GMT	OFF	ON
[0.01-20)	02-Aug-2012	105	9
[0.01-20)	05-Aug-2012	96	12
[20-200)	02-Aug-2012	486	479
[20-200)	05-Aug-2012	480	469

Outline

- 1. Capabilities and Services
- 2. Science Support and Customers
- 3. Timeline of Acceleration System Deployment
- 4. Current Sensor Locations on the ISS
- 5. Basics of the Microgravity Environment
- 6. Roadmaps for the Microgravity Environment
- 7. Brief Characterization of Some Disturbances
- 8. Reboosts
- 9. Ku-Band Antenna
- 10. When Should I Run My Experiment?
- 11. ARIS Attenuation During FIR Ops
- 12. Structural "Mode One"

"Mode One" - First Mode of Main Truss

In general, for structural mode regime below 3 Hz:

- is excited by crew activity and impulsive events
- RMS levels are nominally:
 - ~ 30 ugRMS for USL
 - ~ 40 ugRMS for COL and JEM

"Mode One" - First Mode of Main Truss

In general, for structural mode regime below 3 Hz:

- is excited by crew activity and impulsive events
- RMS levels are nominally:
 - ~ 30 ugRMS for USL
 - ~ 40 ugRMS for COL and JEM

"Mode One" - First Mode of Main Truss

"Mode One" - First Mode of Main Truss

Mode One:

- is monitored daily for structural integrity & off-nominal impacts
- in Sept. 2012, nominal RMS levels were:
 - < 2 ugRMS for USL
 - < 3 ugRMS for COL and JEM

Backup Slides

- Impacts on Shuttle Microgravity Science
- Shuttle Crew Exercise Comparison
- ISS Crew Exercise
- Historical Look at Sensor Locations on the ISS
- System Characteristics

Impacts on Shuttle Microgravity Science

Near real-time support to investigators...

Example:

SOFBALL experiment sensitive to impulsive disturbances during execution of test points.

PIMS:

Correlate OARE data with SOFBALL science data.

Results:

SOFBALL team had justification needed to request periods of STS "free drift" (no thrusters) in order to conduct their experiment.

Impacts on Shuttle Microgravity Science

Near real-time support to investigators...

Example:

SOFBALL experiment sensitive to impulsive disturbances during execution of test points.

PIMS:

Correlate OARE data with SOFBALL science data.

Results:

SOFBALL team had justification needed to request periods of STS "free drift" (no thrusters) in order to conduct their experiment.

Shuttle Crew Exercise Comparison

2 spectral peaks arise from shoulder sway & pedaling rate with excitation of Shuttle structural modes @ 3.5 and 4.8 Hz

Shuttle Crew Exercise Comparison

Shuttle era exercise characterization reinforced need for vibration isolation

Historical Look at Sensor Locations on the ISS

Collectively, SAMS & MAMS Sensors Have Been Mounted in 21 Unique Locations

	system	coord_name	location_name	r_orient	p_orient	y_orient	x_location	y_location	z_location
Г	MAMS	hirap	LAB1O2, ER1, Lockers 3,4	180	0	0	138.68	-16.18	142.35
	MAMS	ossraw	LAB1O2, ER1, Lockers 3,4	90	0	0	135.28	-10.68	132.12
	SAMS	121f02	LAB1S2, MSG, Upper Left Seat Track	0	0	90	161.95	40.39	157.64
	SAMS	121f03	LAB1O1, ER2, Lower Z Panel	0	30	-90	191.54	-40.54	135.25
	SAMS	121f04	LAB1O2, ER1, Lower Z Panel	0	30	-90	149.54	-40.54	135.25
	SAMS	121f05	JPM1F5, ER4, Drawer 2	-90	-90	0	466.8	-292.06	214.58
	SAMS	121f08	COL1A1, ER3, Seat Track near D1	0	0	180	371.17	193.43	165.75
	SAMS	es05	LAB1S3, CIR, Front Panel	180	0	90	116.81	40.39	192.76
	SAMS	es06	LAB1S4, FIR,	0	180	0	69.31	40.39	196.41
Т	SAMS	es08	COL1F2, MSG, Ceiling Plate Y1-C3 Y2-D3	0	90	-90	475.71	235.22	160.27
	SAMS	121f02	LAB1P3, CEVIS, Frame	0	0	-90	118.45	-38.36	170.57
	SAMS	121f02	LAB1O2, ER1, Drawer 1	-90	0	-90	128.73	-23.53	144.15
	SAMS	121f02	JPM1F3, TCQ, Lower Panel	180	-45	0	455.55	-227.69	229.07
	SAMS	121f02	COL1D3, Forward Foot of FWED	90	-45	-90	395.08	287.99	232.22
	SAMS	121f05	LAB1O1, ER2, Upper Z Panel	90	0	90	185.17	38.55	149.93
	SAMS	121f08	LAB1S3, MSG, Ceiling Plate A2-A3	-90	90	0	115.21	53.41	160.98
	SAMS	121f08	LAB1S3, MSG, Ceiling Plate D3-D2	90	90	0	87.99	55.19	160.98
	SAMS	121f08	COL1A1, ER3, B2 Panel	0	180	0	374.17	166.19	157.03
	SAMS	121f08	COL1O1, FSL, ODM Seat Track	0	90	0	434.37	183.25	147.01
	SAMS	121f08	COL1D3, Seat Track near A3	0	-90	0	378.11	246.46	234.96
	SAMS	es08	COL1F2, MSG, Ceiling Plage Y1-B1 Y2-A1	0	90	90	475.63	204.91	159.95

	SAMS	MAMS
Frequency Range (Hz)	0.01 to 400	< 0.01
Resolution	< 1 ug	~ 3 ng
Dynamic Range (dB)	~ 132	

